General Adaptive Neighborhood Image Processing Part II: Practical Application Examples
نویسنده
چکیده
The so-called General Adaptive Neighborhood Image Processing (GANIP) approach is presented in a two parts paper dealing respectively with its theoretical and practical aspects. The General Adaptive Neighborhood (GAN) paradigm, theoretically introduced in Part I [20], allows the building of new image processing transformations using context-dependent analysis. With the help of a specified analyzing criterion, such transformations perform a more significant spatial analysis, taking intrinsically into account the local radiometric, morphological or geometrical characteristics of the image. Moreover they are consistent with the physical and/or physiological settings of the image to be processed, using general linear image processing frameworks. In this paper, the GANIP approach is more particularly studied in the context of Mathematical Morphology (MM). The structuring elements, required for MM, are substituted by GAN-based structuring elements, fitting to the local contextual details of the studied image. The resulting morphological operators perform a really spatiallyadaptive image processing and notably, in several important and practical cases, are connected, which is a great advantage compared to the usual ones that fail to this property. Several GANIP-based results are here exposed and discussed in image filtering, image segmentation, and image enhancement. In order to evaluate the proposed approach, a comparative study is as far as possible proposed between the adaptive and usual morphological operators. Moreover, the interests to work with the Logarithmic Image Processing framework and with the ’contrast’ criterion are shown through practical application examples.
منابع مشابه
General Adaptive Neighborhood Image Processing. Part II: Practical Applications Issues
The so-called General Adaptive Neighborhood Image Processing (GANIP) approach is presented in a two parts paper dealing respectively with its theoretical and practical aspects. The General Adaptive Neighborhood (GAN) paradigm, theoretically introduced in Part I [20], allows the building of new image processing transformations using context-dependent analysis. With the help of a specified analyz...
متن کاملLogarithmic Adaptive Neighborhood Image Processing (LANIP): Introduction, Connections to Human Brightness Perception, and Application Issues
A new framework for image representation, processing, and analysis is introduced and exposed through practical applications. The proposed approach is called logarithmic adaptive neighborhood image processing (LANIP) since it is based on the logarithmic image processing (LIP) and on the general adaptive neighborhood image processing (GANIP) approaches, that allow several intensity and spatial pr...
متن کاملGeneral Adaptive Neighborhood Image Restoration, Enhancement and Segmentation
This paper aims to outline the General Adaptive Neighborhood Image Processing (GANIP) approach [1–3], which has been recently introduced. An intensity image is represented with a set of local neighborhoods defined for each point of the image to be studied. These so-called General Adaptive Neighborhoods (GANs) are simultaneously adaptive with the spatial structures, the analyzing scales and the ...
متن کاملKnowledge-based Solutions as They Apply to the General Radar Problem
This tutorial provides an introduction to the application of knowledge-based processing to the general radar problem. We interpret knowledge-based processing as the use of adaptivity and the exploitation of prior knowledge in such a way as to choose the optimum processing method in each case, and we interpret the general radar problem as the detection, classification and tracking of targets aga...
متن کاملGeneral Adaptive Neighborhood Image Processing for Biomedical Applications
In biomedical imaging, the image processing techniques using spatially invariant transformations, with fixed operational windows, give efficient and compact computing structures, with the conventional separation between data and operations. Nevertheless, these operators have several strong drawbacks, such as removing significant details, changing some meaningful parts of large objects, and crea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009